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Abstract
We study correlations in a bipartite, fermionic, free state in terms of
perturbations induced by one party on the other. In particular, we show that all
so conditioned free states can be modelled by an auxiliary fermionic system
and a suitable completely positive map.

PACS numbers: 03.65.Ud, 03.67.Mn, 05.30.Fk

1. Introduction

The rich structure of multi-partite quantum states that arises from the interplay between
probability and locality leads to many interesting concepts, features and problems [1].
To determine whether a bipartite state is entangled or not or to understand the nature of
entanglement in higher dimensional systems turn out to be very hard problems [2] in quantum
information theory. Also in quantum statistical mechanics locality is still poorly understood.
There is, e.g., no clear description of reduced density matrices of global equilibrium states
in terms of generalized boundary conditions, see [3] and references therein. Such an
understanding is vital for studying the relation between KMS states and limiting Gibbs states,
existence or absence of phase transitions, large deviations, etc.

In this paper, we consider the influence of perturbations of one party on the other. The
states that arise in this way could be called conditional states even if the classical notion
of conditioning cannot be extended to the quantum [4]. More precisely, we work out the
structure of conditional state spaces for fermionic systems, imposing additionally Gaussianity
in section 2. For the remainder of the introduction, we introduce the necessary notions in the
context of finite-dimensional systems and provide some examples.

We consider here mostly finite-dimensional algebras of observables A; these can always
be taken to be unital sub-algebras of some complex matrix algebra M, closed under Hermitian
conjugation. Such algebras are direct sums of full matrix algebras and therefore encompass
both classical systems with finite-state spaces and fully quantum systems with a finite number
of accessible levels. The space of complex linear functionals on A is denoted by A∗ and the
pairing between a functional ϕ and an observable A by ϕ ·A. Because of the finite dimensions
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(A∗)∗ = A. The state space of A is the convex subset S(A) of normalized, positive, linear
functionals. The term state therefore means expectation functional rather than wave function
as in standard quantum mechanics.

We now consider bipartite systems. The observables of both parties form algebras A1 and
A2 and of the composite system A12 = A1 ⊗ A2. Product states are of the form

〈A1 ⊗ A2〉12 = 〈A1〉1 〈A2〉2; (1)

they describe statistical independence. Generally, subsystems will be correlated and this is
encoded in conditional state spaces

S1 := {A1 �→ 〈A1 ⊗ A2〉12 | A2 ∈ A+
2, 〈111 ⊗ A2〉12 = 1} and

S2 := {A2 �→ 〈A1 ⊗ A2〉12 | A1 ∈ A+
1, 〈A1 ⊗ 112〉12 = 1}.

(2)

Si is a compact convex subset of S(Ai ).
We may also consider the linear spaces of functionals

V1 := {A1 �→ 〈A1 ⊗ A2〉12 | A2 ∈ A2} and

V2 := {A2 �→ 〈A1 ⊗ A2〉12 | A1 ∈ A1}.
(3)

As any element in a C*-algebra is a linear combination of at most four positive elements Vi is
spanned by Si . Mostly, Si is a proper subset of the space of positive normalized functionals
in Vi . Our main goal is to describe S1 preferably in terms of a manifestly positive model.
This means that we want to generate the elements of S1 in terms of manifestly positive
objects such as states and completely positive maps, see (13) for the example of a bipartite
finite-dimensional quantum system and our main result, proposition 3, for Gaussian fermionic
states.

A state 〈 〉12 of a composite system is a linear map from A2 to A∗
1:

S : A2 ∈ A2 �→ (A1 ∈ A1 �→ 〈A1 ⊗ A2〉) ∈ A∗
1. (4)

This map is, moreover, positive. The transposed map ST from A1 to A∗
2

ST(A1) · A2 = S(A2) · A1, Ai ∈ Ai (5)

simply swaps the parties. As the rank of a map and its transpose are equal,

dim(V1) = dim(V2) =: n. (6)

The natural number n is the correlation dimension of 〈 〉12.
The conditional state A1 �→ 〈A1 ⊗ A2〉 on A1 can now be written in the form

〈A1 ⊗ A2〉12 = ST(A1) · A2 = ST(A1) · B (7)

for a suitably chosen B from ST(A1)
∗, i.e. we have modelled the conditional states on A1 by

an n-dimensional space. However, B does not have to be positive which makes (7) not very
useful.

1.1. Bipartite fully quantum systems

Consider a bipartite system with fully quantum parties, i.e. Ai = Mi where Mi is a full
matrix algebra of dimension di. The general finite-dimensional situation can be handled by
decomposition in a direct sum of full matrix algebras. A state of the composite system is given
by a density matrix ρ12 of dimension d1d2:

〈A12〉12 = tr(ρ12A12), A12 ∈ M1 ⊗ M2. (8)

2
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Let d3 be the dimension of the range of ρ, then the GNS-construction yields an essentially
unique normalized vector � ∈ Cd1 ⊗ Cd2 ⊗ Cd3 such that

〈A12〉12 = 〈�,A12 ⊗ 113 �〉, A12 ∈ M1 ⊗ M2. (9)

We now perform the Schmidt decomposition of � with respect to M2 and M1 ⊗ M3:

� =
m∑

j=1

cj �2 j ⊗ �13 j . (10)

Here cj > 0 and {�2 j } and {�13 j } are orthonormal families in Cd2 and Cd1 ⊗ Cd3 . The
conditional states on M1 are convex combinations of conditional states defined by a rank 1
operator in M2. These are of the form

A1 �→ 〈�,A1 ⊗ |η〉〈η| ⊗ 113 �〉

=
m∑

k,�=1

〈�2 k, η〉 〈η,�2 �〉 〈�13 k, A1 ⊗ 113 �13 �〉

= 〈ξ,A1 ⊗ 113 ξ 〉. (11)

Here ξ is a normalized vector in span({�13 j }). Moreover, any normalized ξ can be reached
by an appropriate choice of η. Therefore, the conditional states are of the form

A1 �→ 〈ξ,A1 ⊗ 113 ξ 〉, ξ ∈ span({�13 j }). (12)

Picking an isometry V from span({�13 j }) to Cm, we obtain the following manifestly positive
model for the conditional states:

S1 = {A1 �→ tr(ρ �(A1)) | ρ density matrix on Cm} (13)

with

�(A1) = V A1 ⊗ 113 V ∗. (14)

The map � is completely positive and identity preserving. This description of conditional
states fits in the general setting of generalized subsystems of [5].

1.2. Separable states

By Caratheodory’s theorem, a separable state ρ of a bipartite system M1 ⊗ M2 can always
be decomposed into a mixture of d pure product states where d � d2

1d2
2 :

ρ =
d∑

α=1

λα|ϕα〉〈ϕα| ⊗ |ψα〉〈ψα|. (15)

Here, λ = (λα) is a probability vector and the ϕα and ψα are normalized but generally
non-orthogonal vectors in Cd1 and Cd2 . The conditional states are then of the form

A1 �→
∑

α

μα〈ϕα,A1ϕα〉, (16)

where the probability vector μ = (μα) varies in a closed convex subset of the classical state
space of probability vectors of length d, i.e. the conditional state space of a separable state
admits a classical model.

3
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1.3. Pure bipartite states

For a pure state 〈 〉12 on M1 ⊗M2 defined by a normalized vector �12, the forms (7) and (13)
are actually very similar. We can identify the dual of M with M and use the pairing

ϕ · A = tr(ϕA). (17)

Writing the Schmidt decomposition

�12 =
p∑

i=1

r
1
2
i ei ⊗ fi, ri > 0, (18)

we easily compute for A1 ∈ M1

ST(A1) =
p∑

k,�=1

r
1
2
k r

1
2
� 〈ek, A1e�〉 |f�〉〈fk|. (19)

It is not difficult to verify that

S2 = {ST(A1)|A1 � 0 and 〈A1 ⊗ 112〉12 = 1} (20)

is affinely isomorphic to the state space of the p-dimensional complex matrices Mp. We see
therefore that the correlation dimension n is p2. A general conditional state on A1

A1 �→ 〈A1 ⊗ A2〉12, A2 � 0 and 〈111 ⊗ A2〉12 = 1 (21)

can then be written as

A1 �→ tr(ST(A1)B) (22)

for a suitable B ∈ (ST(A1))
∗. As ST(A1) is the full-state space of the n-dimensional matrices,

we must have that

B � 0 and tr(ST(111)B) = 1. (23)

This means that (22) is manifestly positive. To obtain the equivalence with the form (13), we
use the transposition with respect to the basis {fj } of Cp:

tr(ST(A1)B) = tr(BT(ST(A1))
T) = tr(BT�(A1))

= tr(�(111)
1
2 BT�(111)

1
2 �(A1)) (24)

with

�(A1) =
p∑

k,�=1

r
1
2
k r

1
2
� 〈ek, A1e�〉 |fk〉〈f�| and �(A1) = �(11)−

1
2 �(A1)�(111)

− 1
2 .

(25)

1.4. Finitely correlated states

An extension of these ideas was made in the context of translation invariant states on quantum
spin chains. A family of states called finitely correlated states or also matrix product states
was studied [6]. The pure ones turn out to be ground states of VBS models and they are also
useful as trial states in numerical computations [7]. To construct such a state on a quantum
spin chain ⊗ZA (where the single site algebra A is typically a matrix algebra), an auxiliary
finite-dimensional algebra B is introduced together with a unity preserving completely positive
map

E : A ⊗ B → B. (26)

4
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Introducing the super-operators

EA : B → B : B �→ E(A ⊗ B), A ∈ A (27)

and assuming for simplicity that repeated actions of EA on 11B span the whole of B and that
11B is the unique eigenvector of E11 with eigenvalue 1, there exists a unique state ρ on B that
satisfies

ρ(B) = ρ(E11(B)), B ∈ B. (28)

The restrictions of the chain state ω to subsets of contiguous points are

ω(Am ⊗ Am+1 ⊗ · · · ⊗ An) = ρ
(
EAm

◦ EAm+1 ◦ · · · ◦ EAn
(11B)

)
. (29)

The conditional states on the right half-chain ⊗N0A are then modelled by

X �→ σ(�(X)), (30)

where σ is an arbitrary state on B and

� : ⊗N0A → B : �(A1 ⊗ A2 ⊗ · · · ⊗ An) = EA1 ◦ EA2 ◦ · · · ◦ EAn
(11). (31)

2. Free fermionic states

Quantum states are mostly indirectly given, typically as ground or equilibrium states for a
given interaction. Bosonic or fermionic free, quasi-free, Gaussian or determinantal states are
an exception, their two-point expectations are specified and the state is computed on general
elements by applying a simple combinatorial rule. We shall restrict our attention to fermionic
systems and compute conditional states within the free context. A general reference to this
section is [8].

The CAR algebra A(H)—CAR stands for canonical anti-commutation relations—with
one mode Hilbert space H is the C*-algebra generated by an identity 11 and by creation and
annihilation operators a∗ and a that satisfy

ϕ ∈ H �→ a∗(ϕ) is complex linear

{a(ϕ), a(ψ)} = 0 and {a(ϕ), a∗(ψ)} = 〈ϕ,ψ〉11.
(32)

An orthogonal decomposition H = H1 ⊕H2 turns A(H) into a composite system with parties
A(Hi ) up to a minor modification: A(Hi ) sits as a graded tensor factor in A(H) through
the natural identification a∗(ϕi) �→ a∗(ϕi ⊕ 0). This is due to the fact that odd elements in
A(H1 ⊕ 0) anti-commute with odd elements in A(0 ⊕ H2). To simplify notation we shall
often write a∗(ϕ) instead of a∗(ϕ ⊕ 0).

There is a representation from U(1) in the group {αz | z ∈ U(1)} of gauge automorphisms
of A(H):

z ∈ U(1) �→ αz with αz(a
∗(ϕ)) = za∗(ϕ). (33)

Its fixed point algebra is the GICAR algebra—gauge-invariant CAR; it is generated
as a linear space by monomials in creation and annihilation operators of the form
a∗(ϕ1) · · · a∗(ϕn)a(ψn) · · · a(ψ1).

A gauge-invariant free state ωQ on A(H) is determined by a symbol which is a linear
operator Q on H satisfying 0 � Q � 11. The ωQ-expectations of all monomials vanish except
for

ωQ(a∗(ϕ1)a
∗(ϕ2) · · · a∗(ϕn)a(ψn) · · · a(ψ2)a(ψ1)) = det([〈ψk,Qϕ�〉]). (34)
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A different approach will prove useful here, see [9, 10] for more details. The second
quantization map

� : T1(H) → A(H) : �(A) :=
∑
k,�

〈ek, A e�〉 a∗(ek)a(e�) (35)

takes a trace class operator A ∈ T1(H) to an element �(A) in A(H) that is independent of the
chosen orthonormal basis {ei} of H. This map is complex-linear, continuous and satisfies

1
2‖A‖1 � ‖�(A)‖ � ‖A‖1. (36)

It is, moreover, completely positive and for a positive A ∈ T1(H)

‖�(A)‖ = tr A. (37)

In [10] a map E from the Fredholm operators 11+T1(H) to A(H) is considered that satisfies

E(X)E(Y ) = E(XY ),

E(X)∗ = E(X∗) and (38)

E(exp A) = exp(�(A)), A ∈ T1(H).

This map obeys for positive trace-class A the bounds

1 + ‖A‖1 � ‖E(11 + A)‖ � exp(‖A‖1) and ‖E(11 + A) − 11‖ � exp(‖A‖1) − 1. (39)

A gauge-invariant free state ωQ can then be characterized by

ωQ(E(X)) = det(11 − Q + QX), X ∈ 11 + T1(H). (40)

A state ω on A(H) is even if it vanishes on all monomials in creation and annihilation
operators with an odd number of factors. Gauge-invariant states are automatically even. If ωi

is an even state on A(Hi ) for i = 1, 2, then there exists a unique state ω1 ∧ω2 on A(H1 ⊕H2)

such that

(ω1 ∧ ω2)(X1X2) = ω1(X1) ω2(X2), Xi ∈ A(Hi ). (41)

A symbol Q induces an orthogonal decomposition

H = H0 ⊕ H̃ ⊕ H11, (42)

where

H0 = ker(Q) and H11 = ker(11 − Q) (43)

and ωQ factorizes into

ωQ = ω0 ∧ ωQ̃ ∧ ω11 with Q̃ = Q|H. (44)

The states ω0 on A(H0) and ω11 on A(H11) are pure; they are Fock and anti-Fock states.
We now consider a free state on a bipartite fermionic system A(H1 ⊕ H2) defined by a

symbol Q with the block matrix structure

Q =
[

A B

B∗ C
.

]
(45)

The aim is to characterize all free states on A(H1) that arise as conditional states, and more
precisely, to characterize

Sfree
1 = {ωÃ | ωÃ is a free state on A(H1) and

∃ a gauge-invariant Y ∈ A(H2) such that

ωÃ(X) = ωQ(XY), X ∈ A(H1)}. (46)

6
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From the positivity conditions Q � 0 and Q � 11 of the symbol (45) on H1 ⊕ H2, it
immediately follows that

B ker(C) = B ker(11 − C) = 0. (47)

This implies that the sub-algebras A(ker(C)) and A(ker(11 − C)) of A(H2) are irrelevant for
computing the conditional states (46). There is therefore no loss in generality to assume that
the kernels of C and 11 − C are trivial. In this case, the positivity conditions can be restated as

0 < C < 11, BC−1B∗ � A and B(11 − C)−1B∗ � 11 − A. (48)

In these inequalities, even if C−1 or (11 − C)−1 are unbounded, BC−1B∗ and B(11 − C)−1B∗

extend to bounded operators on H1. The positivity conditions (48) can be recast into

0 � A � 11 and 0 � C � 11 (49)

and there exist operators

Di : H2 → H1, ‖Di‖ � 1, i = 1, 2 such that

B = A
1
2 D1C

1
2 = (11 − A)

1
2 D2(11 − C)

1
2 . (50)

Free states are the fermionic version of classical Gaussians. For Gaussians, expectations
of a random function multiplied by a Gaussian variable can be expressed as expectations of the
derivative of the function with respect to the random variable. The following lemma provides
such a formula in the fermionic context. Note that the classical second derivative becomes a
combined commutation anti-commutation.

Lemma 1. For any Y ∈ A(H) and ϕ ∈ H, we have

ωQ(a∗(ϕ)Ya(ϕ)) = ωQ(a∗(ϕ)a(ϕ))ωQ(Y ) + ωQ({a(ϕ), [a∗(ϕ), Y ]}). (51)

Proof. We may limit ourselves to gauge-invariant Y due to the gauge invariance of the free
state. Since we can approximate Y by linear combinations of gauge-invariant monomials in
A(H), it suffices to show the lemma for Y = a∗(ψ1) · · · a∗(ψn)a(ηn) · · · a(η1). For such Y,
using the fact that ωQ is free, the expression ωQ(a∗(ϕ)Ya(ϕ)) expands to

ωQ(a∗(ϕ)a(ϕ)) ωQ(a∗(ψ1) · · · a∗(ψn)a(ηn) · · · a(η1))

+
∑
k,�

εk,� ωQ(a∗(ϕ)a(η�)) ωQ(a∗(ψk)a(ϕ))

×ωQ(a∗(ψ1) · · · â∗(ψk) · · · a∗(ψn)a(ηn) · · · â(η�) · · · a(η1)). (52)

Here εk,� = ±1, depending on the parity of the permutation needed to put the modes in

the original order and â∗(ψk) means that the factor a∗(ψk) is removed from the product
a∗(ψ1) · · · a∗(ψn).

We now compute by repeated application of (32)

a∗(Qϕ)a(ηn) · · · a(η1) = 〈ηn,Qϕ〉a(ηn−1) · · · a(η1) − a(ηn)a
∗(Qϕ)a(ηn−1) · · · a(η1)

=
∑

�

ε� ωQ(a∗(ϕ)a(η�)) a(ηn) · · · â(η�) · · · a(η1) ± a(ηn) · · · a(η1)a
∗(Qϕ),

(53)

with the upper sign for n even and the lower sign for n odd; therefore∑
�

ε� ωQ(a∗(ϕ)a(η�)) a(ηn) · · · â(η�) · · · a(η1) = [a∗(Qϕ), a(ηn) · · · a(η1)]∓. (54)

7
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Using this relation, its conjugate and the anti-commutation relations (32), we get the desired
result for gauge-invariant monomials and hence for all gauge-invariant elements:∑
k,�

εk,� ωQ(a∗(ϕ)a(η�)) ωQ(a∗(ψk)a(ϕ))

× a∗(ψ1) · · · â∗(ψk) · · · a∗(ψn)a(ηn) · · · â(η�) · · · a(η1)

= −
∑

�

ε� ωQ(a∗(ϕ)a(η�))

× ∓ [a(Qϕ), a∗(ψ1) · · · a∗(ψn)]∓a(ηn) · · · â(η�) · · · a(η1)

= ±
∑

�

ε� ωQ(a∗(ϕ)a(η�))

×{a(Qϕ), a∗(ψ1) · · · a∗(ψn)a(ηn) · · · â(η�) · · · a(η1)}
= ±{a(Qϕ), a∗(ψ1) · · · a∗(ψn)[a

∗(Qϕ), a(ηn) · · · a(η1)]∓}
= {a(Qϕ), [a∗(Qϕ), a∗(ψ1) · · · a∗(ψn)a(ηn) · · · a(η1)]}. (55)

�

The following proposition bounds the two-point correlations of conditional states. To
show this we rely on the equilibrium properties of free states. An equilibrium state ωβ on a
C*-algebra A is linked to a dynamics in Heisenberg picture through the KMS condition. Let
{αt | t ∈ R} be a continuous group of automorphisms of A; then, ωβ is an α-KMS state at
inverse temperature β > 0 if there exists for any pair of observables x, y ∈ A a function

z ∈ C �→ Fx,y(z) ∈ C, (56)

that is analytic inside the strip 0 < �mz < β, that extends continuously to the closure of the
strip, and such that

Fx,y(t) = ωβ(αt (x)y) and Fx,y(t + iβ) = ωβ(yαt (x)), t ∈ R. (57)

It is straightforward to check that the KMS states on a finite-dimensional full quantum system
precisely coincide with the canonical Gibbs states.

Let 0 < Q < 11 whereby we mean that for 0 �= ϕ,

0 < 〈ϕ,Qϕ〉 and 0 < 〈ϕ, (11 − Q)ϕ〉. (58)

The state ωQ is then the unique α-KMS state on A(H) at inverse temperature β = 1, where α

is the strongly continuous one-parameter group of automorphisms [11]

αt (a
∗(ϕ)) = a∗(eithϕ), t ∈ R (59)

with

h = ln(11 − Q) − ln Q. (60)

Proposition 1. With the assumptions and notations of above there exists for any positive,
gauge-invariant Y ∈ A(H2) with ωQ(Y ) = 1 a bounded operator Ã on H1 such that

ωQ(a∗(ϕ)a(ψ)Y ) = 〈ψ, Ãϕ〉, ϕ, ψ ∈ H1 (61)

and

A − BC−1B∗ � Ã � A + B(11 − C)−1B∗. (62)

Proof. Since Y commutes with a(ψ) and ωQ(Y ) = 1, we can use lemma 1 to get

〈ψ, Ãϕ〉 = ωQ(a∗(ϕ)Ya(ϕ))

= 〈ϕ,Aϕ〉 + ωC({a(B∗ϕ), [a∗(B∗ϕ), Y ]}). (63)

8
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The next step consists in rewriting this identity in such a way that we can use the
information ωC(Y ) = 1. This can be achieved through the KMS condition. Using an
approximation argument, we may assume that a∗(B∗ϕ) and Y are analytic elements for the
automorphism group α of A(H2) defined by C. For an analytic element x, we have

(αz(x))∗ = αz(x
∗), z ∈ C and

ωC(xY ) = ωC

(
xY

1
2 Y

1
2
) = ωC

(
α−i (Y

1
2 )xY

1
2
)

= ωC

(
α− i

2
(Y

1
2 )α i

2
(x)α i

2
(Y

1
2 )

)
, (64)

and similarly

ωC(Yx) = ωC

(
α− i

2
(Y

1
2 )α− i

2
(x)α i

2
(Y

1
2 )

)
,

ωC(xYy) = ωC

(
α− i

2
(Y

1
2 )α− i

2
(y)α i

2
(x)α i

2
(Y

1
2 )

)
.

(65)

This allows us to rewrite (63) as

〈ϕ, Ãϕ〉 = 〈ϕ,Aϕ〉 + ωC

(
α− i

2
(Y

1
2 )uα i

2
(Y

1
2 )

)
, (66)

with

u = 〈B∗ϕ, (11 + e−h)B∗ϕ〉 − a∗(e
h
2 B∗ϕ + e− h

2 B∗ϕ
)
a
(
e

h
2 B∗ϕ + e− h

2 B∗ϕ
)
. (67)

Here h is the single-mode Hamiltonian as in (60) replacing Q by C. Using

0 � a∗(ζ )a(ζ ) � ‖ζ‖211, (68)

we obtain the statement of the proposition

A − BC−1B∗ � Ã � A + B(11 − C)−1B∗. (69)
�

Obviously, the two-point correlations of states in Sfree
1 also satisfy these bounds. Since

the two-point correlations of a free state ωQ are encoded in its symbol Q, the operator Q will
satisfy the bounds given for Ã in proposition 1. In proposition 2, we show that the converse
is also true, i.e. that every free state whose two-point correlations satisfy the given bounds is
contained in the weak∗-closure of Sfree

1 .
To prove this statement, we use conditional states generated by an exponential element Y

in A(H2).

Lemma 2. If ωQ is a free state on A(H) with symbol Q as in (45) and Y = E(L)/ωQ(E(L))

is an exponential element in A(H2) with L � 0, then the conditional state ω̃ : X �→ ωQ(XY)

is a free state on A(H1) with symbol

Ã = A − B(L − 11)(11 − C + CL)−1B∗. (70)

Proof. We calculate the expectation value of elements X = E(K) with K an operator on H1

in the state ω̃. Since these elements E(K) span the gauge-invariant CAR algebra [10], these
values determine the state ω̃.

First we determine the normalization factor ωQ(E(L)) by using (40):

ωQ(E(L)) = det(11 − Q + Q(11 ⊕ L))

= det

[
11 −B + BL

0 11 − C + CL

]

= det(11 − C + CL). (71)

9
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Likewise, we have that

ωQ(E(K)E(L)) = det(11 − Q + Q(K ⊕ L))

= det

[
11 − A + AK −B + BL

−B∗ + B∗K 11 − C + CL

]

= det(11 − C + CL) det(11 − Ã + ÃK) (72)

with

Ã = A − B(L − 11)(11 − C + CL)−1B∗. (73)

Hence, ω̃ is a free state with symbol Ã

ω̃(E(K)) = ωQ(E(K)E(L))

ωQ(E(L))
= det(11 − Ã + ÃK) = ωÃ(E(K)). (74)

�

Lemma 3. Let 0 < ε < 1 and let Ã be an operator on H1 such that A − Ã is of finite rank
and such that

A − (1 − ε)BC− 1
2 B∗ � Ã � A + (1 − ε)B(11 − C)−

1
2 B∗; (75)

then there exists a positive Y ∈ A(H2) such that

ωÃ(X) = ωQ(XY), X ∈ A(H1). (76)

Proof. We consider the set of operators

Ã = A + BKB∗ (77)

with K a finite-rank operator on H2 such that Ã satisfies the bounds (75). This is the case if

−(1 − ε)C−1 � K � (1 − ε)(11 − C)−1. (78)

Using lemma 2, we obtain the free state with symbol Ã as the conditional state
X �→ ωQ(XY) with

Y = 1

ωQ(E(L))
E(L) ∈ A(H2) (79)

if we are able to find a positive operator L on H2 such that

K = (11 − L)(11 − C + CL)−1 and 11 − L finite rank. (80)

Rewriting this in terms of a finite-rank operator N, such that L = 11 + N , we have

K = −N(11 + CN)−1. (81)

If 11 + CK is invertible, this equation is solved by

N = −K(11 + CK)−1. (82)

To show that 11 + CK is invertible, assume that ϕ ∈ ker{11 + KC}. This means that

〈Cϕ, ϕ〉 + 〈Cϕ,KCϕ〉 = 0 (83)

and

0 � 〈Cϕ, ϕ〉 − 〈Cϕ, (1 − ε)C−1Cϕ〉 = ε〈ϕ,Cϕ〉. (84)

Hence, ker{11 + KC} = {0}. Therefore, as CK is of finite rank, ran(11 + CK) = H2.
Furthermore, ker{11 + CK} = {0} as well and so 11 + CK is invertible. �
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Proposition 2. The weak∗-closure of the set S free
1 of conditioned free states on A(H1)

coincides with the set of free states on A(H1) whose symbols Ã satisfy

A − BC− 1
2 B∗ � Ã � A + B(11 − C)−

1
2 B∗. (85)

Proof. For free states, weak∗-convergence is equivalent to weak convergence of their
symbols. The proof then immediately follows from proposition 1 and lemma 3. �

There is a notion of gauge-invariant, free, completely positive, identity-preserving
maps between CAR algebras that naturally extends that of free states. Such a map
� : A(H) → A(K) is determined by operators

R : H → K and S : H → H (86)

that satisfy

0 � S � 11 − R∗R. (87)

The action of the map on a gauge-invariant monomial of order 2 is given by

�(a∗(ϕ)a(ψ)) = a∗(Rϕ)a(Rψ) + 〈ψ, S ϕ〉, ϕ, ψ ∈ H. (88)

Moreover, the pull-back ωQ ◦ � of a free state on A(K) is a free state on A(H). For more
details, we refer to [10].

As in (13), we can write the free conditional states as generalized subsystems, using a free
completely positive map to a suitable operator algebra and free states on the target algebra.

Proposition 3. There exists a unique, free, minimal, identity preserving, completely positive
map � such that the weak∗-closure of S free

1 is the pull-back of the free states by �.

Proof. Let K = ran(B) ⊂ H1. We construct operators

R : H1 → K and S : H1 → H1 (89)

such that

0 � S � 11 − R∗R. (90)

These operators define a completely positive, free, identity-preserving map � from A(H1) to
A(K) as in (88). The pull-back of the free states on A(K) consists of the free states on A(H1)

with symbols

{Ã = R∗T R + S | 0 � T � 11}. (91)

We need to show that the set (91) coincides with (85). This is the case if and only if

R = U

√
B C− 1

2 B∗ + B (11 − C)−
1
2 B∗ and S = A − B C− 1

2 B∗. (92)

In this expression, U is an arbitrary unitary on K. �

3. Conclusion

In this paper, we described the correlations in bipartite quantum states in terms of a space of
conditional states. These states are restrictions of the global state to one party after perturbing
the other. For finite-dimensional systems, one can always find a manifestly positive model of
the conditional states in terms of an auxiliary system and a completely positive map. Separable
states correspond to classical models. The main result of this paper is to work out the details
of the manifestly positive model in the setting of Gaussian fermionic systems. This greatly
simplifies the analysis as Gaussian structures are characterized by one-particle objects or,
stated differently, tensor constructions are replaced by direct sums.
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